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Abstract
Recent experiments in type II superconductors on the dynamics of vortices
driven by external currents have revealed strong off-equilibrium phenomena,
such as ‘memory’ and history dependent effects in I–V characteristics, which
set in beyond the regime of validity of current theories on vortex stationary
elastic flow. Here we discuss these phenomena in the framework of a simple
model of a Monte Carlo interacting lattice gas moving in a pinning background
under an external drive. Via computer simulations we give a comprehensive
picture of time dependent phenomena in transport properties, response functions
and I–V characteristics of the model and outline its quantitative connections
to experimental findings.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

I–V characteristics of driven vortex matter in type-II superconductors are an issue of deep
theoretical and practical importance [1–4]. Even though their (quasi) stationary elastic regime
can be described within collective creep theory [5] or its extensions [1, 6], they exhibit apparent
non-elastic behaviours, such as plastic deformations, and strong non-stationary phenomena,
such as ‘memory effects’, found in experiments as well numerical simulations (see [7–14],
references therein and below), which are still largely not understood.

In the present paper we discuss these issues in the framework of a schematic model [14]
introduced to describe the large scale physics of vortex matter in superconductors, i.e. a driven
lattice gas moving, in the presence of thermal agitation, in a disordered pinning background.
We show here, via Monte Carlo simulations, that such a schematic model is able to describe
many of the above properties of driven vortices, ranging from non-linearities in the I–V
characteristic to ‘memory’ effects, suggesting that it does capture some essential ingredients
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of vortex dynamics. The model simplicity makes it understandable in full detail, allowing
us to depict a clear picture of its physics. Interestingly, such a model is closely related to a
previously introduced driven lattice gas [15] to study off-equilibrium driven systems. These
connections can have important consequences for understanding driven vortex matter.

In previous works [14] we have mainly studied the model dynamics in the absence of
an external drive, i.e. its magnetic creep, and shown that the model is able to reproduce a
broad spectrum of the phenomenology of vortex physics ranging from magnetization loops
and their ‘anomalous’ second peak, logarithmic creep, ‘anomalous’ finite creep rate for T → 0,
‘rejuvenation’ and ‘hysteresis’ of the system response. Here we first depict a clear scenario of
many important properties of voltage relaxation and I–V characteristics with their relations to
creep phenomena. After that we mainly discuss topics which have raised considerable interest
more recently, such as the peak effect in the critical current, its relation with phase transitions
in the system, or the strong ‘ageing’ and memory phenomena experimentally discovered in the
I–V (i.e. history dependent voltage responses or critical current dependences on driving ramp
rates). As a result of this study, a comprehensive framework appears of the time dependence
discovered in transport properties and their connections to the magnetic phenomena. In a
nutshell, under typical conditions, as the voltage is measured, the system exhibits a slow
reorganization of its density profile (reorganization is also present in the absence of the drive);
this is at the core of the non-linear, non-stationary slow voltage relaxation.

In section 2 we briefly describe the model used here. In section 3 we discuss the properties
of voltage relaxation and in section 3.1 its most important characteristic timescale, τV . We then
discuss the deep relation of τV with underlying magnetic relaxation phenomena. Section 3 is
concluded by a short summary of its results in section 3.2. In section 4, we investigate I–V
characteristics and, in particular, the consequences of the existence of τV on their properties and
on those of critical currents (such as ‘memory effects’, see section 4.3). In such a framework
we also comment on their off-equilibrium scaling behaviours (see section 4.1) and the presence
of a peak effect (PE) in critical currents (see section 4.2). A brief discussion of the effects of
pinning properties on the overall scenario is given in section 4.4, and section 4 is concluded
by a short summary of its results in section 4.5. Finally, section 5 contains our conclusions.

2. The model

The vortex system in type II superconductors is an excellent laboratory for experimental
and theoretical studies of the influence of thermal and quenched disorder on a system of
interacting particles. The competition between the random force produced by the static
pinning background and an applied force induced by a transport current is studied in a
particularly efficient way through the current–voltage (I–V ) characteristics (see [1–4] and
references therein). The current applied to the superconductor produces a Lorentz’s force
on the magnetic vortices. If the vortices are free they will move along with the applied
force. But vortices in superconductors are basically never free. Bulk and surface pinning
together with the interaction amongst the vortices counteracts the applied force. As the
applied force becomes sufficiently large to, at least partially, overcome the restrictions from
the pinning, the vortices will begin to break loose and move through the superconductor. The
onset of motion occurs gradually and this leads to non-linear plastic processes [7, 12, 13].
The consequent voltage drop is a direct measure of the amount of vortex motion. Hence,
non-linear I–V characteristics are measured as a result of the complex processes associated
with the onset of vortex motion. In the last few years it has also become clear that strong
non-stationary phenomena are observed in the vortex system and dynamical effects play
an important role in a broad range of temperatures and densities (see [12–14], references
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Figure 1. A schematic diagram of the ROM model: the original vortex system (left), described by
an off-lattice position field, is coarse grained on a length scale l0 and mapped into a lattice model,
described by a lattice discrete field, where multi-occupancy is allowed (ROM restricted occupancy
model).

therein and below). The physics of all these phenomena is the general topic we discuss
below.

Since the theoretical investigation of the above complex properties in real systems is hardly
achievable in full detail, we consider here a schematic model, called a restricted occupancy
model (ROM), described in [14]. We briefly recall its basic features for the sake of clarity.

A system of straight parallel vortex lines, corresponding to a magnetic field B along

the z-axis, interacts via a potential [2]: A(r) = φ2
0

2πλ′2
[
K0(r/λ′) − K0(r/ξ ′)

]
, K0 being the

MacDonald function, ξ and λ the correlation and penetration lengths (ξ ′ = cξ/
√

2, λ′ = cλ,
c = (1 − B/Bc2)

−1/2). The typical high vortex densities and long λ imply that the vortex
system is strongly interacting. To make it theoretically more tractable, as proposed in [14] (see
also [26]), one can coarse grain in the xy-plane by introducing a square grid of lattice spacing,
l0, of the order of the London length, λ (see figure 1). The number of vortices on the i th coarse
grained cell, ni , is an integer number smaller than Nc2 = Bc2l2

0/φ0 (Bc2 is the upper critical field
and φ0 = hc/2e is the flux quantum). The coarse grained interaction Hamiltonian defining the
ROM model is thus [14]: H = 1

2

∑
i j ni Ai jn j − 1

2

∑
i Aii |ni | − ∑

i A p
i ni . The first two terms

describe the repulsion between the vortices and their self-energy, and the last the interaction
with a random pinning background. For sake of simplicity, we consider the simplest version
of H: we choose Aii = A0 = 1; Ai j = A1 < A0 if i and j are nearest neighbours, Ai j = 0
otherwise; the random pinning is delta-distributed P(A p) = (1 − p)δ(A p) + pδ(A p − A p

0 ).
Particles are also given a ‘charge’ si = ±1 (corresponding to opposite direction of magnetic
flux) and neighbouring particles with opposite ‘charge’ annihilate. The values of the model
parameters in H that we use here (exceptions are clearly written) are: A1 = 0.28A0,
A p

0 = 0.3A0, Nc2 = 27, p = 1/2. They can be related to the real material parameters as
shown in [14].

In analogy with the computer investigation of dynamical processes in fluids [16], the time
evolution of the model is simulated by a Monte Carlo Kawasaki dynamics on a square lattice
of linear size L at a temperature T . The considered system size is L = 32, but our results
are checked up to L = 128 (and they are robust to changes in H parameters). The system is
periodic in the y-direction. The two edges parallel to the y-axis are in contact with a vortex
reservoir, representing an external magnetic field. The reservoir has a particle density Next .
Particles can enter and leave the system only through the reservoir via the same Monte Carlo
dynamics above.

The system is prepared by zero field cooling and then increasing Next at a constant rate
up to the working value (usually below Next = 10, a value below the second magnetization
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Figure 2. Under a given applied drive I , the voltage, V (t), is recorded as a function of time at
T = 1.0 (Next = 10). Here we plot V (t) shifted by V∞ (i.e. its asymptotic value); the four curves
correspond to the four shown I . Inset: the decay of the magnetization corresponding to the data
of the main panel, shows a very tiny change in the observed range of currents.

peak [14]). For a given applied field, Next , we monitor the system relaxation in the presence of a
drive, I , in the y-direction (due to the Lorentz force deriving from a current in the x-direction).
As in similar driven lattice gases [15], the effect of the drive is simulated by introducing a
bias in the Metropolis coupling of the system to the thermal bath: a particle can jump to a
neighbouring site with a probability min{1, exp[−(�H − ε I )/T ]}. Here, �H is the change
in H after the jump and ε = ±1 for a particle trying to hop along or opposite to the direction
of the drive and ε = 0 in orthogonal jumps. A drive I generates a voltage V [30]:0

V (t) = 〈va(t)〉 (1)

where va(t) = 1
2�t

∫ t+�t
t−�t v(t ′) dt ′ is an average vortex ‘velocity’ in a small interval around

the time t . We consider such an average to improve the statistics on V (t) and choose �t
accordingly. Here, t is the Monte Carlo time (measured in units of single attempted update
per degree of freedom), v(t) = 1

L

∑
i vi(t) is the instantaneous flow ‘velocity’, vi(t) = ±1

if the vortex i at time t moves along or opposite to the direction of the drive I and vi = 0
otherwise. The data presented below are averaged over up to 3072 realizations of the pinning
background (with A1 = 0.28A0, p = 0.5 and A p

0 = 0.3A0, when not otherwise stated) and
noise realizations.

3. Voltage time relaxation

The first issue we discuss is the structure of voltage time relaxation. Upon applying a small
drive, I , at time t = 0, the system response, V , relaxes towards stationarity following an
interesting pattern in the time domain. In figure 2 we plot, as an example, the quantity
V (t) − V∞, i.e. the difference in the voltage at time t , V (t), and its I dependent asymptotic
limit V∞ = limt→∞ V (t) as a function of t (for the shown values of I ). We plot V (t) − V∞
instead of just V (t) for the sake of clarity, since V∞(I ) may change strongly with I (see below).
In figure 2 it is apparent that the voltage relaxation, V (t), has two very different parts: at first a
rapidly increasing, and very strongly fluctuating, response is seen overshooting the asymptotic
value V∞, later on a very slow decrease towards stationarity follows. For instance, for I = 3
in a time interval �t � 2 × 10−1, V leaps from about zero to �Vi ∼ 2 × 10−3, corresponding
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Figure 3. For a given drive I = 1, the voltage relaxation, V (t), is plotted as a function of
time, t , for the shown values of temperatures (Next = 10). At very low T , the voltage decay
with t is approximately logarithmic, while at higher T , an early relaxation (which for small I is
approximately logarithmic) is followed by stretched exponentials: V (t) ∝ exp[−(t/τV )βV ]. The
superimposed curves are these fits (see text for details).

to a rate ri = |�Vi/�t| ∼ 10−2. This is to be compared with the rate of the subsequent slow
relaxation from, say, t = 2 × 10−1 to t = 104, rf ∼ 10−7: ri and rf differ by five orders of
magnitude.

The following long time (i.e. t > 100), slow relaxation of V (t), found for not too low
T (see below), has a characteristic double step structure, in agreement with experimental
findings [12, 13, 31]. Typically, for not too low temperatures (as shown in figure 3 for T = 1),
V (t) can be asymptotically well fitted by stretched exponentials:

V (t) � V∞(I ) + �V exp

[
−

(
t

τV

)βV
]
. (2)

The above long time fit defines the characteristic asymptotic scale, τV , of relaxation. The
exponent βV , as well as τV , V∞ and �V , are functions of I , T and Next (see figures 4, 5, 6, 7).

In particular, τV drastically increases by decreasing T (see figure 5) and below a crossover
temperature Tg � 0.25 [14], τV gets longer than our observation window (and in the meantime
βV becomes much smaller than 1). This corresponds to the fact that below Tg on our
observation timescales we can no longer approach equilibrium. Actually, below Tg a much
slower, approximately logarithmic, relaxation is found, as shown in figure 3 for T = 0.1:
V (t) � V∞ + �V [1 + U ln( t+t0

t0
)]−1. Interestingly, the same kind of crossover from stretched

exponential to logarithms by decreasing T is also observed in magnetic relaxation, as reported
in detail in [14], an important fact that we will discuss further later on. In the inset of figure 2,
for comparison to V (t) we also plot the relaxation of relative magnetization �M(t) which
shows a tiny dependence on I (here M(t) = Nin(t) − Next is the difference of the average
vortex density inside, Nin , and outside, Next , the sample, for more details of the magnetization
see [14]).

Figures 2 and 3 also reveal an interesting pre-asymptotic decay of V (t), which shows
a pronounced dependence on I : after the first steep rise, for I below a characteristic value
I ∗ � O(1), V (t) relaxes approximately logarithmically in t for times up to scales of O(τV ),
while for I > I ∗ a power law like behaviour precedes the asymptotic stretched exponential
of equation (2). This double step structure closely remembers the relaxation of supercooled
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Figure 5. The characteristic timescale of voltage relaxation, τV (T ), as a function of T (for I = 1
at Next = 10). The superimposed curves are the fits discussed in the text. Inset: τV is non-
monotonous as a function of Next with a maximum corresponding to the location of the second
magnetization peak (here I = 1 at T = 1).

liquids described by mode coupling theory [23]. Actually, we have already discussed the
relations between the present model for vortex matter and fragile glass formers in [14] which
we refer to for further detail.

The above results clearly point out that since V is a function of time (at least for t � τV ),
the I–V itself can be strongly time dependent whenever the system is probed or driven on
timescales shorter than τV . In figure 4 we plot the asymptotic I –V , i.e. the function V∞(I ) (for
Next = 10): V∞ appears to be linear on I in several orders of magnitude in the whole range
of temperatures we considered, T ∈ [0.1, 5]. Notice that, due to the intrinsic lattice nature of
our model, for I → ∞ V∞(I ) tends to saturate to a finite plateau. In figure 4 we also show
the voltage corresponding to time t = 10−1, V (t = 10−1), as a function of I ; this outlines
the difference with V∞(I ). Later on we will discuss in deeper detail the I–V characteristic



Transport properties and I–V characteristics of a model for driven vortex matter 6795

0.2 0.5 1.0 2.0 5.0
T

0.5

0.6

0.7

0.8

0.9

1.0

V

0 5 10 15 20 25
Next

0.8

0.85

0.9

0.95

1.0

V

Figure 6. The exponent of the stretched exponential relaxation, βV (T ), as a function of T (for
I = 1 at Next = 10): βV decreases from about 1 (corresponding to standard exponential relaxation)
at high T to comparatively smaller values at low T . Inset: βV is plotted as a function of Next (I = 1
at T = 1).
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For I → 0, τV (I ) saturates to a finite value which implies that the asymptotic critical current is
Ic = 0. Inset: βV is plotted as a function of I (T = 1, Next = 10).

recorded when the system is far from stationarity, as for instance when at low temperatures
τV is large enough for the asymptotic behaviour being unreachable on finite observation time
scales.

3.1. Equilibration time

One of the most important physical quantities individuated by the above analysis of the voltage
relaxation, is the system characteristic timescale τV . It is the determinant for understanding
the system dynamics and its approach to equilibrium (see [14]). Let us consider first the
temperature dependence of τV , shown in figure 5. In our model, in the region where τ has a
steep increase with T a Vogel–Tamman–Fulcher (VTF) law fits the data (see the continuous
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curve in figure 5):

τV (T ) = τ0 exp

[
E0

(T − Tc)ν

]
(3)

with τ0 � 7 × 102, ν � 0.9 and Tc � 0.01. The best value fit for Tc is then a number
numerically indistinguishable from zero. This fact confirms that in the present 2D version of
the model the glass transition is pushed at T = 0 [14].

We notice that in the low T regime a power law divergence also fits the data, as shown by
the dotted curve of figure 5: τV = τ0 (T − Tc)

−ν + τ∞, with τ0 � 1.1 × 103, τ∞ � 1.3 × 103,
the exponent ν � 2 and Tc � 0.1. The presence of a strong increase of τ close to a VTF
law (or an Arrhenius since Tc ∼ 0) or a power law is again a mark of the apparent similitude
with glassy features of supercooled liquids and glasses [23, 24, 28, 29]. We stress that, in
this scenario, Tc represents the location of an ‘ideal’ transition, as Tg (defined above) is just a
crossover point where relaxation timescales of the dynamics get longer that our observation
window (here about 105).

In the inset of figure 5, we show for completeness the dependence of τV on Next .
Interestingly, τV is non-monotonous with Next showing an apparent maximum around the
value corresponding to the second peak in magnetization loops Next ∼ 13.5 [14]. The increase
in τV (Next) found at very small or large Next are associated to the small and large field first
order melting transitions [14], where the system has a transition from a disordered state to
an ordered one. In figure 6 we show the values of the exponent βV corresponding to the τV

of figure 5 (the data in figures 5 and 6 are for I = 1). The figure shows that βV decreases
from a value of about 1 (corresponding to a simple exponential) at high T to about 0.5 for
T = 0.3. This is again a behaviour very close to the one found in other glassy systems. The
non-monotonous behaviour of τV (Next) is found in a similar way in βV (Next) (see inset of
figure 6).

Very important is the behaviour of τV on changing the driving I , shown in figure 7 for
T = 1 and Next = 10: τV (I ) increases by decreasing I and seems to approach a finite plateau
for I < I ∗, with I ∗ � O(1). The higher the drive I the faster the approach to stationarity and,
in this sense, an increase in I has an effect similar to an increase in T . Notice that such a result
is in agreement with experimental findings [12] and with analogous features observed in other
driven lattice gases [15]. The superimposed curve in figure 7 is a power law fit:

τV (I ) = τ 0
V − τ∞

V

[1 + (I/3I ∗)y]
+ τ∞

V (4)

where, for T = 1, Next = 10 and A p = 0.3 we find with τ 0
V = 2.6 × 103, τ∞

V = 1.7 × 103,
I ∗ = 0.9 and the new exponent y � 2. Finally, in an inset of figure 7 we also show the function
βV (I ). Experimentally, the existence of a characteristic time decreasing with I approximately
as a power law has been reported in the third reference of [12], also the exponent y from
experimental data is larger than ours reported above.

Let us notice that the existence at T = 1 of a finite τV limit for I → 0 implies that the
flux flow can be activated for any finite I . This confirms that the system’s asymptotic (i.e. for
t → ∞) critical current, Ic, is zero for3 T = 1. The asymptotic value of Ic can be expected
to be non-zero at lower T or for stronger pinning, as shown later on. The above reasoning
for instance may suggest that in the region T < Tc, since τV (I ) → ∞ for I → 0, a true
asymptotic finite Ic can be found, Tc being the ideal glass transition point [1, 14], where by
definition τV (T )|I=0 diverges. A consequence of the existence of a finite Ic for T < Tc would

3 The reasoning can be briefly restated as follows: if Ic is non-zero then, at least for I small enough, vortices cannot
diffuse; thus they must be ‘frozen’ and τv be very large (infinite).
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Figure 9. The Bean magnetization profile, M, present in the system after a given time t = 105 is
plotted as a function of the coordinate x in the system (x ∈ [0, L]) orthogonal to the direction of
the drive, for the shown values of the applied drive I (T = 0.1, Next = 10).

be the possibility of vortex flow without dissipation first discussed by Fisher [1]. In the present
context such a scenario is consistent, but cannot be tested because of the above discussed huge
relaxation time found at low T and a Tc numerically indistinguishable from zero.

The time dependent properties of the driven flow, and in turn those of I–V s, are strongly
linked to the concurrent vortex creep and reorganization of vortex domains. In fact, both with
or without an external drive, the system evolves in the presence of a Bean-like profile [32]
(see figure 9) which also relaxes with a characteristic timescale τM [14]. This phenomenon,
in the absence of an external drive, has been experimentally observed in detail for instance
in [33]. An important discovery is that τM(I ) and τV (I ) are approximately proportional, as
shown in figure 8. This outlines that the strong non-linear, non-stationary voltage relaxation
is structurally related to the reorganization of vortices during the creep (a fact in agreement
with recent experiments [22]). In particular, in figure 9 we show the magnetic spatial profile
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present in the system (at T = 0.1 and Next = 10) after a drive I has been applied for a given
time t = 105: consistent with the above scenario, the larger I is, the flatter the Bean profile,
which corresponds to shorter τV .

3.2. Summary

Summarizing, in this section we have investigated, in full detail, the properties of voltage
relaxation in the ROM model at given values of the control parameters, T , Next and I .
The function V (t) has two different parts with very different behaviours: at first a rapidly
increasing, and very strongly fluctuating, response is seen overshooting the asymptotic value
V∞, later a slow decrease towards stationarity follows. The latter, in its long time behaviour,
is an approximately stretched exponential and, for very low T , logarithmic. The relevant
quantity governing the long time decay is the equilibration time, τV (T, Next, I ), needed for
vortex relaxation towards equilibrium. The important emerging features are that τV appears to
exponentially diverge as T → 0 and it is a non-monotonous function of the applied field, Next ,
with a well defined maximum around the second magnetization peak location, corresponding
to the peak position in the peak effect observed in critical currents (see below). Importantly,
τV depends on the drive I , decreasing approximately as a Lorentzian when I → ∞. An
important discovery is that voltage and magnetic relaxations are strongly linked: in brief, while
the voltage is being measured, the system Bean profile (i.e. density profile) typically undergoes
a slow (usually almost logarithmic) reorganization (which is also present in the absence of the
drive); this induces, in turn, the non-linear shapes of I–V and the non-stationary slow voltage
relaxation.

4. I–V characteristics

In the above section we have outlined the existence of characteristic timescales, in particular
τV (I, T, Next), which play an important role in the process of voltage relaxation of the driven
system. We are going to consider now some more general features of I–V characteristics and,
in particular, the effects of the presence of a finite τV , which cannot be ignored above all at low
T . For instance, whenever the system is perturbed and observed on timescales shorter than
the time needed to approach stationarity, τV , strong ‘hysteresis’ and ‘memory’ phenomena are
going to appear.

In the present model the I–V characteristics are recorded as in real experiments: after
fixing the working conditions (i.e. temperature, T , and external field, Next ), the function V (I )
is recorded by ramping up the drive I from zero at a given rate γI = d I/dt and by collecting
the corresponding values of V . We notice immediately that in all the situations when γI > τ−1

V
the function V (I ) will depend on the system history, simply because the system has not been
able to follow the applied drive. In fact, it is now experimentally well established that I–V
characteristics can show strong ‘memory’ phenomena in typical working situations (see for
instance [12, 13, 20] and references therein).

As an example of the I–V found in the present model, in figure 10, we plot the I–V
recorded after ramping I (with a rate γI = 5 × 10−3) at T = 1 (filled squares) and at T = 0.1
(open circles) for an applied field of Next = 10. The low T I–V appears to have the typical
S shaped form experimentally found [3, 4, 12, 13, 18, 19]. As a matter of fact, the I–V
are dependent on the ramp rate γI (see figure 12) and their S shape tends to disappear when
γI → 0: the S shape in the I–V of the present model is an effect of short times of relaxation
allowed in the system by the comparatively too large γI . The continuous (T = 1) and dotted
(T = 0.1) lines in figure 10 are, in fact, the asymptotic I –V , V∞(I ) we discussed in the
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Figure 10. The I–V is recorded by ramping I with a rate γI = dI/dt = 5×10−3 for the shown T ,
at Next = 10. The continuous and dotted curves (respectively T = 1, 0.1) are the asymptotic I–V ,
i.e. those where, for a given I , V is measured after waiting t = 105 (see figure 2). Inset: the
differential resistivity, ρ = dV/dI , for the same data of the main panel. The horizontal lines
are from a linear fit to the asymptotic I–V . The characteristic values Im and Ip roughly locate
crossover points in the ‘short time’ ρ, which, however, disappear if t → ∞. (Figure from [14].)

previous section, i.e. those recorded after applying a drive I and measuring V after waiting a
time long enough (here t = 1.5 × 105). As stated, for finite γI , the I–V is non-Ohmic with a
power law behaviour at low I [39]: V � ρ0 I α where the exponent α, in general, is field and
temperature dependent (see [39]). For instance, α is about 1.3 for γI = 5 × 10−3, Next = 10
and T = 0.1 (see below). At larger values of I an Ohmic behaviour is observed [39].

Of practical relevance is one of the observable effects found for large rates γI : the effective
resistivity measured in the sample is larger than the intrinsic one (i.e. the one relative to the
‘asymptotic I–V ’). This is clearly shown by the differential resistivity, ρ = dV/d I , plotted
in the inset of figure 10, where again the horizontal continuous and dotted lines correspond to
the asymptotic Ohmic behaviour.

The non-monotonous behaviour of the finite γI differential resistivity, ρ(I ), has often
been interpreted as a signal of the presence of different regimes in the vortex flow, separated,
for instance, by the location of the thresholds Im and Ip shown in the inset of figure 10. In
the present context, however, it appears that they are just transient effects in the non-stationary
regime observed for comparatively too fast γI . The linear behaviour of the asymptotic I–V
indeed shows that these ‘crossovers’ in the ‘short time’ ρ(I ) tend to slowly disappear with time,
thus they cannot correspond to transitions among different driven stationary phases [7, 8, 10–
13, 35]. This conclusion holds despite the regular behaviour of Im and Ip with T also
experimentally seen (for instance, Ip seems to grow with T ). An intrinsic structure in the
function ρ(I ) can possibly be observed at sufficiently lower currents and temperatures [35].
Interestingly, at T = 0 crossovers between different plastic channels flow regimes are indeed
typically found in the present model as well as in more realistic models (see discussions
in [7, 8, 26, 27, 35] and references therein). For instance, in [26] (where, actually, a different
definition of V and I is used) the flow at T = 0 in the region I < Im was shown to be
characterized by ‘filamentary channels’, around Ip by ‘braided rivers’ and only at higher I
it becomes a ‘full flow’. Thus, here at T = 0.1 the thresholds Im and Ip might be the off-
stationarity, finite temperature rests of these transitions in the nature of vortex flow properly
defined only at T = 0.
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Figure 12. At low temperatures the dependence of the I–V on the driving ramp rate γI becomes
apparent. The four curves plotted here are data collected at the same temperature and external field
(T = 0.1, Next = 10), but correspond to the different shown values of γI = dI/dt .

For sake of completeness, we show in figure 11 the appearance of the I–V characteristics,
V (I ), and differential resistivity, ρ(I ), for T = 0.1 recorded for several applied fields taken
from a broad range of values. Notice the non-monotonous behaviour of Ip with Next . Finally,
in figure 12 for a system at T = 0.1 and Next = 10, we show the effects on the I–V of
different current ramping rates γI = d I/dt . In particular, it is apparent that by lowering γI

the resistivity decreases, a fact in correspondence with experimental findings [13].

4.1. Off-equilibrium scaling of I–V at small I and T

Now we consider in some details the temperature dependence of the I–V . In figure 13 we
show the isothermal functions V (I ) recorded, with a ramp rate γI = 5 × 10−4, at several
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Figure 13. We plot the small currents region of the I–V , recorded at the shown temperatures, in
a log–log plot (here Next = 10, γI = 5 × 10−4). At high T the I–V is Ohmic, but by lowering
T an apparent departure from linearity is observed, with a new non-trivial long power law region
emerging at low I . Notice that the data at low temperature are taken while the system is very far
from equilibrium.

temperatures in the presence of an applied field Next = 10. By decreasing T , the I–V curves
become less and less Ohmic and, at very low T , they tend to collapse one on top of the others
on a sort of ‘limit function’ close to a non-trivial power law (the dashed line in figure 13):
V ∼ I α with α ∼ 1.3 for T → 0.

The structure of the isothermal I–V appears to be qualitatively very close to the one
experimentally found (see [4, 18–21, 36, 37] and references therein). Interestingly, despite
the fact that at low T the system is far from stationarity, in such a region the I–V can be
approximately rescaled using the scaling relation originally proposed by Fisher [36] and
believed to signal the presence of a ‘vortex glass’ transition in vortex matter [36, 37]:

V

I |T − Tc|ν(z+2−d)
= F

(
I

|T − Tc|ν(d−1)

)
. (5)

From equation (5), as proposed in [36], we define I ′ = I/|T − Tc|ν(d−1) and V ′ =
V/|T − Tc|ν(z+1), and plot in figure 14 the quantity ln(V ′/I ′) as a function of ln(I ′). In
figure 14 we have only included data for T � 0.1, cut off the high I region where the I–V
saturate and averaged the data in bins in order to avoid having too noisy points with a plot
drastically worsened. The quality of the obtained scaling is certainly not excellent, but two
distinct regions definitely seem to appear: a flat low I part followed by a power law low
at higher I . Approximate I–V scaling plots, with the same structure of figure 14, have been
experimentally found in systems where Tc is zero [34]. The scaling exponents used in figure 14
are ν ∼ 0.35, z ∼ 1.6, while Tc ∼ 10−4 is consistent with zero and with our previous results
on the behaviour of the T = 0 divergence of τV . The present values of the critical exponents
differ from those experimentally found, the model being too schematic, but are surprisingly
close to those found in a much more realistic XY model with random pinning [38].

Importantly, the present discovery of an approximate scaling structure for I–V recorded
far from stationarity is experimentally confirmed by very recent observations [20]. However,
it is not clear whether the above approximate scaling is either just an artifact resulting from
not clean enough data, or an interesting manifestation of equilibrium critical scaling in off-
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Figure 14. The I–V data at low T from figure 13 are rescaled using the scaling functions proposed
by Fisher (see text). Although the quality of the scaling is to some extent poor, a rough structure
seems to emerge with a constant part followed by a power law. We have only considered data for
T � 0.1 (more precisely, T = 10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1), else the scaling drastically
worsens. We have also cut off the region where the I–V saturate. The scaling parameters are:
ν � 0.35, z � 1.6 and Tc � 10−4.

equilibrium off-stationarity states, or whether it really corresponds to a new form of scaling
appearing in the far from equilibrium dynamics.

4.2. Critical currents and resistivities

From the I–V characteristic it is possible to extract information of practical relevance such as
critical currents and resistivities. This we now analyse in some detail, focusing in particular
on their dependences on temperature, T , applied field, Next , and current ramp rate, γI . As in
experiments, we define the ‘effective’ critical current, I eff

c , by a so-called ‘voltage criterion’:
I eff
c is the current value where V gets larger than Vthr = 5 × 10−5. We call I eff

c an ‘effective’
critical current since we show below that generally it does not represent an ‘intrinsic’ material
parameter. In fact, defined in this way, the critical current is a quantity which, for a given
T and Next , may depend on the sample history and on γI as well (see figure 15). A better
definition for an intrinsic critical current, Ic, comes from the asymptotic I–V , V∞(I ), that
we introduced and discussed above in the present paper; actually, V∞(I ), is by definition not
‘history’ dependent. I eff

c is a more practical quantity, since it can be easily obtained, and it
coincides with Ic whenever the system is probed on timescales longer than τV (typically, this
is not the case in the system ‘glassy’ region).

Our data about the effective critical current are shown in figure 15. In the left panel of
figure 15 we plot the dependence of I eff

c on the temperature (for Next = 10 and γI = 5×10−4).
We find that at low T I eff

c decays approximately as a power law with T :

I eff
c (T ) � I0

(1 + T
T0

)xT
(6)

where I0 � 0.3, T0 � 0.6 and the exponent xT � 0.4 (the continuous curve in the left panel
of figure 15). The above fit is reasonable in the low T region (over several decades), but
above T ∼ 1 a drastic change is observable: an increase of I eff

c with T , analogous to the
one experimentally found, called the peak effect (PE). The PE, i.e. a sharp peak observed
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Figure 15. The critical current I eff
c is plotted as a function of T (left panel, where Next = 10

and γI = 5 × 10−4), Next (central panel, where T = 0.1 and γI = 5 × 10−4) and γI = dI/dt
(right panel, where T = 0.1 and Next = 10). I eff

c is defined as the point where V = 5 × 10−5.
The superimposed curves are the fits discussed in the text. Interestingly, the so-called peak effect
is clearly observable. In particular, the peak in I eff

c as a function of Next in the present model
corresponds to the second magnetization peak found in hysteretic loops. The sudden rise in I eff

c as
a function of T is related to the melting transition. Also notice the non-equilibrium effects observed
at low T , as shown by the γI dependence plotted in the right panel.

in the critical current (or a deep in resistivity) when plotted, for instance, as a function
of the applied field or temperature [22, 40–43], is a ubiquitous phenomenon observed in
vortex physics of type-II superconductors. In recent years important theoretical [44–46] and
experimental [33, 41–43, 47] aspects of the PE have been clarified, showing, in particular, that
the PE is associated to new phase transitions occurring in the system. However, important
questions are still open, as those concerning the origin of the strong dynamical anomalies
discovered in the PE region, including ‘memory’ effects, ‘history’ dependence and apparent
metastability phenomena [12, 17, 41, 43, 48]. This can be clarified by considering the structure
of τV , as already discussed in [14, 39], and explained in full detail below.

Actually, in the present framework, the PE is even more apparent when I eff
c is plotted as

a function of Next , as shown in the central panel of figure 15 for T = 0.1. Our data closely
resemble those experimentally found [41, 49]. The location of the maximum in the PE, NPE,
is dependent on the ramping rate γI as discussed below, but importantly it is very close to the
values of the second magnetization peak found in magnetic loops, Nsp [14, 39]; NPE for γI → 0
is numerically equal to the equilibrium value of Nsp. In brief, in the present model the PE is the
manifestation in the driven system of a first order phase transition found at equilibrium in the
absence of drive and associated to a ‘second peak’ in magnetization measures [39]. Finally, in
the right panel of figure 15 we show that, at low T , the value of the critical current is definitely
dependent on the current ramp rate γI . In particular, at T = 0.1 and Next = 10 we found [39]
that I eff

c decreases by increasing γI approximately according a power law (the dotted curve in
the right panel of figure 15):

I eff
c (γI ) � I0

(1 + γI

γ 0
I
)�I

(7)

where I0 � 0.7, γ 0
I � 10−5 and the exponent �I � 0.2.

Along with I eff
c , we report on the properties of the resistivity, R = V/I (which by definition

of I eff
c is strictly related to it), and the differential resistivity, ρ = dV/d I . We have already

discussed in the previous sections the I dependence of R and ρ, thus below we only consider
R and ρ data obtained by an average in the current interval I ∈ [0.1, 0.5] (which is located in
the small current region of the I–V , see figures 10–13). Such an average allows us to simplify
the discussion and to show cleaner data.
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Figure 16. The averaged resistivity, R = V/I (filled symbols), and differential resistivity,
ρ = dV/dI (empty symbols), defined in the text are plotted as a function of T (left panel, where
Next = 10 and γI = 5 × 10−4), Next (central panel, where T = 0.1 and γI = 5 × 10−4) and γI

(right panel, where T = 0.1 and Next = 10). The superimposed curves are the fit discussed in
the text. In particular, notice the saturation towards a finite value of R and ρ at very low T . This
phenomenon is analogous for transport properties to the existence of a finite magnetization creep
rate found at vanishingly small T . It is an off-equilibrium effect.

Of particular interest is the dependence of R and ρ on the temperature T (left panel
figure 16). In fact, one observes that, at very low T , R and ρ seem to saturate to a finite value.
In particular, at low T , the following fits are reasonable (respectively the continuous and dotted
curves in the left panel of figure 16):

R(T ) � R0

(
1 +

T

TR

)s

; ρ(T ) � ρ0

(
1 +

T

Tρ

)s ′

(8)

where R0 � 2×10−4, TR � 0.1, s � 0.3, and ρ0 � 2.6×10−4, Tρ � 1.5, s′ � 1.0. The above
finite resistivity values for T → 0 are closely related to the saturation of the magnetic creep
rate, S(T ), found in the present model [14]. We notice that the value of the exponent s ∼ 0.3 is
very close to the one independently calculated by the I–V scaling �R(T ) ∼ |T − Tc|ν(z−d+2)

with ν(z − d + 2) ∼ 0.2 as predicted in [36].
Notice that in the present schematic lattice model an interesting counterintuitive effect

is observed: R and ρ, at higher T , start decreasing with the temperature. This is a non-
obvious fact, which is the analogue of the peak effect in I eff

c reported above. The origin of this
phenomenon is related to the presence of a phase transition in the lattice system corresponding
with the peak in R of figure 16. This finding is in agreement with the interpretation proposed
in [50], but the actual mechanism underlying such an effect in our model is different from the
one of [50]. Finally, in the central and left panel of figure 16 we show the behaviours of R and
ρ with Next and γI .

4.3. Memory phenomena in I–V characteristics

Another effect of the existence of a long, even though finite, equilibration timescale, τV , in the
system is the presence at low T of strongly ‘history’ dependent properties of the current–voltage
characteristic. We have already discussed this issue in [14] and here, for sake of completeness,
we just connect it to the general features of voltage relaxation we have considered above.

At a given value of T and Next , as in real experiments on vortex matter [13], we let the
system undergo a current step of height I0 for a time t0 before starting recording the I–V by
ramping I , as sketched in the inset of figure 17. Figure 17 shows (for T = 0.1, Next = 10)
that the I–V depends on the waiting time t0. The system response is ‘ageing’: the longer t0
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(i.e. depends on t0) and, more specifically, stiffening: it is smaller the longer t0. (Figure from [14].)
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Figure 18. From the data of figure 17, we can define the critical current, I eff
c , as the point where

V = 5×10−5. Interestingly, in agreement with recent experimental data, I eff
c (t0) is logarithmically

increasing with the time, t0, the system spent under the current step. The superimposed curve is
the fit discussed in the text.

the smaller the response, a phenomenon known as ‘stiffening’ in glass formers [24, 25]. These
effects are manifested in a violation of time translation invariance of the two times correlation
functions [14] analogous to those of glass formers or granular media [24, 28, 29].

These simulations also reproduce the experimentally found time dependence of the critical
current [13]. Usually, one defines an effective critical current, I eff

c , as the point where V
becomes larger than a given threshold (say Vthr = 5 × 10−5 in our case): one then finds that
I eff
c is t0 and I0 dependent. For instance, like in experiments [13] I eff

c is slowly increasing with
t0 (see figure 18: at T = 0.1 and Next = 10 for a drive I0 = 1); we find that I eff

c increases
approximately logarithmically with t0:

I eff
c (t0) � J1 + J2 ln(t0) (9)

with J1 � 0.15, J2 � 0.008 (the dotted line of figure 18).
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Figure 19. The I–V is measured at T = 0.1 and Next = 0.4 in a sample with very strong pinning
sites, Ap

0 = 10A0, and small pinning density, p = 0.2. We show here the non-linear behaviour of
the I–V and their dependence on γI , signalling the off-equilibrium status of the system.

The existence of the slow part in the V (t) relaxation also affects the ‘stiffening’ of the
response in the I–V of figure 17, which is due to the non-stationarity of the vortex flow on
scales smaller than τV . Actually, in figure 17, for a given I the value of V on the different curves
corresponds to the system being probed at different stages of its non-stationary evolution (this
also outlines that the proper definition of Ic is the asymptotic one).

4.4. Role of pinning

Finally, an important question arising in the context of vortex physics concerns the effects that
pinning has on transport properties. We discuss such a topic in the present section where we
consider higher pinning strength, A p

0 , and different fractions on pinning sites, p. In particular,
we study the strong pinning case where A p

0 = 10A0 (to compare to the cases A p
0 = 0.3

previously discussed). The general picture depicted up to here in the paper is not altered,
however some interesting features appear.

The I–V curves (analogous to those reported in figure 12 where A p
0 = 0.3), at T = 0.1

and Next = 0.4, are shown in figure 19 in the case of strong pinning strength A p
0 = 10A0 and

small pinning fraction p = 0.2. The apparent dependence of the I–V function on the current
ramp rate is also clearly observable here. The basic difference with the weak pinning case
dealt with before is that now a definite finite threshold current, I eff

c , appears above which the
voltage is positive. Importantly, the value of such a threshold is still dependent on the current
ramp rate γI , as shown in figure 20. The points I eff

c (γI ) can be reasonably well interpolated
by a power law:

I eff
c (γI ) � Jrγ

xp

I + J0 (10)

where Jr � 0.25, J0 � 0.0 and the exponent x p � 0.2. Since the exponent x p is small a log fit
could work too, but more interesting is the fact that J0 is numerically zero. This implies that
in the present case with strong pinning strength and small pinning density, the ‘equilibrium’
critical current, J0, is indeed zero. This is consistent with the presence of a zero Tc and with
the fact that we are at a finite T . These findings too are in strict analogy to recent experimental
observations [13].



Transport properties and I–V characteristics of a model for driven vortex matter 6807

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

I

0.0

0.1

0.2

0.3

I c

Figure 20. For the data of figure 19, we define the critical current, Ic, as the point where V > 0
(within our numerical accuracy �V = 10−6). Interestingly, in agreement with recent experimental
data, Ic(γI ) seems to increase with γI . The superimposed curve is the fit discussed in the text.

0.0 0.2 0.4 0.6 0.8 1.0
p

10
-5

10
-4

10
-3

10
-2

R
,

V/I(I Ic
+
)

dV/dI(I Ic
+
)

A0
p
=10 A0

V/I(I 0)
dV/dI(I 0)
A0

p
=0.3 A0
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on the pinning density, p, and strength, Ap

0 , are plotted here at T = 0.1 and Next = 0.4 (for
γI = 5 × 10−4).

Finally (see figure 21), we have studied the resistivity, R, and the differential resistivity,
ρ, as a function of the fraction of pinning sites, p, in the system for two values of their strength
A p

0 . Figure 21 shows that R and ρ strongly increase with p, but they decrease with A p
0 .

4.5. Summary

Summarizing, in this section we have seen that for low T the I–V characteristics in the
ROM model have the typical non-linear, S shape form experimentally found. They have
approximately power law behaviours which are dependent on the current ramp rate γI . For
weak pinning strength, Ohmic behaviour is recovered when γI → 0. Whenever γI > τ−1

V ,
the function V (I ) depends on the system history, simply because the system has not been
able to follow the drive. Of practical relevance is the finding that for large γI the effective



6808 M Nicodemi and H J Jensen

resistivity measured in the sample is larger than the intrinsic one (i.e. the one derived from the
‘asymptotic I–V ’). We also showed that for I–V recorded far from stationarity an approximate
scaling structure à la Fisher is found, whose precise nature is still to be understood. We have
also outlined the presence of a clear peak effect (PE) in critical currents. The location of
the maximum in the PE as a function of the external field is importantly very close to the
values of the second magnetization peak found in magnetic loops; their values coincide for
γI → 0 [39]. We have also discussed ‘memory’ phenomena observed in I–V s, such as its
interesting stiffening behaviours. We stress that known experimental facts on vortex matter
are in agreement with all the above listed properties of the present model.

5. Conclusions

We have demonstrated that a comprehensive phenomenology, consistent with known
experiments, of transport properties of vortex matter can be derived from a simple Monte
Carlo driven lattice model of the vortex system. In this schematic model vortices are dealt
with as ‘particles’, interacting among themselves and with a pinning random background.
They undergo a diffusion thermal dynamics under an external drive.

Our results are briefly summarized in sections 3.2 and 4.5. In a few words, we found that
important ‘history’ dependent phenomena observed at low temperatures (as in the PE region)
originate from the properties of the system characteristic timescales, τV (T, Next, I ), which
diverge a low T and has a broad maximum as a function of the external field around the PE. In
particular, the PE, observed in transport properties as a function of the applied field,corresponds
to a first order phase transition found in the un-driven system at equilibrium, which in turn
is manifested as a second peak in magnetic hysteresis loops [39]. We have also discussed
important properties of I–V , critical current and resistivity. All these phenomena can be
addressed within the general scenario of off-equilibrium ‘glassy’ dynamics of the ROM model.

We have restricted our investigation here to a system of rigid parallel vortices,
corresponding to a two dimensional version of our model. The main effect of the restriction
to two dimensions is that the thermodynamic glass transition temperature Tc is zero,
whereas in higher dimensions Tc may be non-zero. For the present general discussion
about off-equilibrium phenomena this fact is, however, not crucial, since phenomenological
behaviours found above the transition temperature (manifested through logarithmically slow
time dependence of creep, ‘memory and hysteretic’ effects in I–V , etc) are very similar in the
two cases. The significant slowing down at low temperatures makes it difficult in experiments,
as well as in simulations, to approach equilibrium in the vicinity of Tc: this is only possible
at temperatures above the phenomenological glass transition temperature Tg—the temperature
where the characteristic timescale of the system becomes much longer than any affordable
experimental or simulation timescale. The off-equilibrium physics around Tg looks much the
same whether Tc is zero or non-zero.

The present model appears to describe a broad range of phenomena found in vortex
matter, including a variety of magnetic and transport properties. In this respect, its simple
physical mechanisms may indeed catch some important aspect of vortex physics [1–4], as the
application of driven lattice gases theory [15] to off-equilibrium properties of vortex matter
may open further interesting developments.
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‘Federico II’, ESF Sphinx Program, MURST-PRIN 2002, MIUR-FIRB 2002, CRdC-AMRA,
INFM-PCI.



Transport properties and I–V characteristics of a model for driven vortex matter 6809

References

[1] Blatter G, Feigel’man M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
[2] Brandt E H 1995 Rep. Prog. Phys. 58 1465
[3] Yeshurun Y, Malozemoff A P and Shaulov A 1996 Rev. Mod. Phys. 68 911
[4] Cohen L F and Jensen H J 1997 Rep. Prog. Phys. 60 1581
[5] Larkin A I and Ovchinnikov Yu N 1979 J. Low Temp. Phys. 34 409
[6] Le Doussal P and Gianmarchi T 1998 Phys. Rev. B 57 11356
[7] Jensen H J, Brass A and Berlinsky A J 1988 Phys. Rev. Lett. 60 1676
[8] Nori F 1996 Science 276 1373
[9] Olson C J, Reichhardt C and Nori F 1998 Phys. Rev. Lett. 81 3757

[10] Kolton A B, Dominguez D and Gronbech-Jensen N 1999 Phys. Rev. Lett. 83 3061
[11] Reichhardt C, van Otterlo A and Zimanyi G T 2000 Phys. Rev. Lett. 84 1994
[12] Bhattacharya S and Higgins M J 1993 Phys. Rev. Lett. 70 2617

Bhattacharya S and Higgins M J 1995 Phys. Rev. B 52 64
Henderson W, Andrei E Y, Higgins M J and Bhattacharya S 1996 Phys. Rev. Lett. 77 2077

[13] Xiao Z L, Andrei E Y and Higgins M J 1999 Phys. Rev. Lett. 83 1664
Xiao Z L, Andrei E Y, Shuk P and Greenblatt M 2000 Phys. Rev. Lett. 85 3265

[14] Nicodemi M and Jensen H J 2001 Phys. Rev. Lett. 86 4378
Nicodemi M and Jensen H J 2001 Phys. Rev. Lett. 87 259702
Nicodemi M and Jensen H J 2002 Phys. Rev. B 65 144517
Nicodemi M and Jensen H J 2001 J. Phys. A: Math. Gen. 34 L11
Nicodemi M and Jensen H J 2001 J. Phys. A: Math. Gen. 34 8425
Nicodemi M and Jensen H J 2001 Europhys. Lett. 54 566
Nicodemi M and Jensen H J 2002 Europhys. Lett. 57 348

[15] Katz S, Lebowitz J L and Spohn H 1983 Phys. Rev. B 28 1655
Schmittmann B and Zia R K P 1995 Phase Transition and Critical Phenomena vol 17, ed C Domb

and J L Lebowitz (London: Academic)
Marro J and Dickman R 1999 Nonequilibrium Phase Transitions in Lattice Models (Cambridge: Cambridge

University Press)
[16] Binder K 1997 Rep. Prog. Phys. 60 487
[17] Wordenweber R, Kes P H and Tsuei C C 1986 Phys. Rev. B 33 3172
[18] Kwok W K et al 1994 Phys. Rev. Lett. 72 1092
[19] Safar H et al 1995 Phys. Rev. B 52 6211
[20] Wen H H, Li S L, Chen G H and Ling X L 2001 Phys. Rev. B 64 054507
[21] Campion R P, King P J, Benedict K A, Bowley R M, Czerwinka P S, Misat S and Morley S M 2000 Phys. Rev.

B 61 6387
[22] Paltiel Y et al 2000 Nature 403 398
[23] Götze W and Sj̈ogren L 1992 Rep. Prog. Phys. 55 241
[24] Angell C A 1995 Science 267 1924

Ediger M D, Angell C A and Nagel S R 1996 J. Phys. Chem. 100 13200
Bouchaud J P, Cugliandolo L F, Kurchan J and Mezard M 1997 Spin Glasses and Random Fields

ed A P Young (Singapore: World Scientific)
[25] Lefloch F, Hamman J, Ocio M and Vincent E 1992 Europhys. Lett. 18 647

Jonason K, Vincent E, Hamman J, Bouchaud J P and Nordblad P 1998 Phys. Rev. Lett. 81 3243
[26] Bassler K E and Paczuski M 1998 Phys. Rev. Lett. 81 3761

Bassler K E, Paczuski M and Altshuler E 2001 Phys. Rev. B 64 224517
[27] Monier D and Fructer L 2000 Eur. Phys. J. B 17 201
[28] Caiazzo A, Coniglio A and Nicodemi M 2002 Phys. Rev. E 66 046101

Caiazzo A, Coniglio A and Nicodemi M 2004 Europhys. Lett. 65 256
Coniglio A, de Candia A, Fierro A and Nicodemi M 1999 J. Phys.: Condens. Matter 11 A167

[29] Nicodemi M, Coniglio A and Herrmann H J 1997 Phys. Rev. E 55 3962
Coniglio A and Nicodemi M 2000 J. Phys.: Condens. Matter 12 6601
Nicodemi M 2000 Physica A 285 267
Nicodemi M 1998 Physica A 257 448
Nicodemi M 1999 Phys. Rev. Lett. 82 3734
Tarzia M, de Candia A, Fierro A, Nicodemi M and Coniglio A 2004 Europhys. Lett. 66 531

[30] Hyman R A, Wallin M, Fisher M P A, Girvin S M and Young A P 1995 Phys. Rev. B 51 15304



6810 M Nicodemi and H J Jensen

[31] D’Anna G et al 1995 Phys. Rev. Lett. 75 3521
[32] This is confirmed in MD simulations by Reichhardt C et al 1995 Phys. Rev. B 52 10441

Reichhardt C et al 1996 Phys. Rev. B 53 R8898
[33] Giller D, Shaulov A, Tamegai T and Yeshurun Y 2000 Phys. Rev. Lett. 84 3698

van der Beek C J, Colson S, Indenbom M V and Konczykowski M 2000 Phys. Rev. Lett. 84 4196
[34] Wen H-H et al 1998 Phys. Rev. Lett. 80 3859
[35] Koshelev A E and Vinokur V M 1994 Phys. Rev. Lett. 73 3580

Balents L and Fisher M P A 1995 Phys. Rev. Lett. 75 4270
Giamarchi T and Le Doussal P 1996 Phys. Rev. Lett. 76 3408

[36] Fisher M P A 1989 Phys. Rev. Lett. 62 1415
Fisher D S, Fisher M P A and Huse D A 1991 Phys. Rev. B 43 130

[37] Koch R H, Foglietti V, Gallager W J, Koren G, Gupta A and Fisher M P A 1989 Phys. Rev. Lett. 63 1511
[38] Olsson P and Teitel S 2001 Phys. Rev. Lett. 87 137001

Vestergren A, Lidmar J and Wallin M 2002 Phys. Rev. Lett. 88 117004
[39] Nicodemi M 2002 J. Phys.: Condens. Matter 14 2403

Nicodemi M 2003 Fractals 11 149
Nicodemi M 2003 Phys. Rev. E 67 041103

[40] Pippard A B 1969 Phil. Mag. 19 217
[41] Bhattacharya S and Higgins M J 1994 Phys. Rev. B 49 10005

Higgins M J and Bhattacharya S 1996 Physica C 257 232 and references therein
Sarkar S et al 2000 Phys. Rev. B 61 12394

[42] De Sorbo W 1964 Rev. Mod. Phys. 36 90
Kes P H and Tsuei C C 1983 Phys. Rev. B 28 5126
Tamegai T et al 1993 Physica C 213 33
Yang G et al 1993 Phys. Rev. B 48 4054
Yeshurun Y et al 1994 Phys. Rev. B 49 1548
Zeldov E et al 1995 Nature 375 373
Khaykovich B et al 1996 Phys. Rev. Lett. 76 2555
Khaykovich B et al 1997 Phys. Rev. B 56 R517
Gammel P L et al 1998 Phys. Rev. Lett. 80 833
Shi J et al 1999 Phys. Rev. B 60 12593
Radzyer Y et al 2000 Phys. Rev. B 61 14362

[43] Banerjee S S et al 1998 Phys. Rev. B 58 995
Ravikumar G et al 2000 Phys. Rev. B 61 12490
Banerjee S S et al 2001 Physica C 355 39

[44] Glazman L I and Koshelev A E 1991 Phys. Rev. B 43 2835
Daemen L L et al 1993 Phys. Rev. Lett. 70 1167
Koshelev A E and Kes P H 1993 Phys. Rev. B 48 6539
Krusin-Elbaum L et al 1992 Phys. Rev. Lett. 69 2280
Larkin A I et al 1995 Phys. Rev. Lett. 75 2992
Tang C et al 1996 Europhys. Lett. 35 597

[45] Giamarchi T and Le Doussal P 1997 Phys. Rev. B 55 6577
[46] van Otterloo A et al 2000 Phys. Rev. Lett. 84 2493
[47] Cubitt R et al 1993 Nature 365 407

Lee S L et al 1993 Phys. Rev. Lett. 71 3862
Kwok W K et al 1994 Phys. Rev. Lett. 73 2614
Galifullin M B et al 2000 Phys. Rev. Lett. 84 2945
Sonier J E et al 2000 Phys. Rev. B 61 R890

[48] Kokkaliaris S et al 1999 Phys. Rev. Lett. 82 5116
Kokkaliaris S et al 1999 J. Low Temp. Phys. 117 1341
Rassau A P et al 2000 Physica B 284–288 693
Konczykowski M et al 2000 Physica C 332 219
Giller D et al 1997 Phys. Rev. Lett. 79 2542

[49] Correa V F, Nieva G and de la Cruz F 2001 Phys. Rev. Lett. 87 057003
[50] Tang C, Ling X, Bhattacharya S and Chaikin P M 1996 Europhys. Lett. 35 597


